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Abstract

The dynamics of a freely jointed chain in the continuous limit is described
by a field theory which closely resembles the nonlinear sigma model.
The generating functional �[J ] of this field theory contains nonholonomic
constraints, which are imposed by inserting in the path integral expressing
�[J ] a suitable product of delta functions. The same procedure is commonly
applied in statistical mechanics in order to enforce topological conditions on
a system of linked polymers. The disadvantage of this method is that the
contact with the stochastic process governing the diffusion of the chain is
apparently lost. The main goal of this work is to re-establish this contact. For
this purpose, it is shown here that the generating functional �[J ] coincides
with the generating functional of the correlation functions of the solutions of
a constrained Langevin equation. In the discrete case, this Langevin equation
describes as expected the Brownian motion of beads connected together by
links of fixed length.

PACS numbers: 11.10.−z, 05.40.−a, 05.20.−y

1. Introduction

The subject of this work is a chain obtained by performing the continuous limit of a system of
M − 1 links of fixed length a and M beads of constant mass m. In this limit the number M of
beads approaches infinity, the length of the links and the mass of the beads go to zero, while
the total length L of the chain remains finite. The dynamics of a chain with rigid constraints
of this kind has been studied in a remarkable series of papers [1–3] using an approach based
on the Langevin equation. Later on, mainly the statistical mechanics of such chains has been
investigated, see e.g. [4–6]. Dynamical models are however interesting by themselves and
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have also some applications, for instance in modeling the response of a chain to mechanical
stresses in micromanipulations [7].

In [8], the dynamics of the constrained chain has been considered using path integral
methods. The resulting model is a generalization of the nonlinear sigma model [9], which will
be called here the generalized nonlinear sigma model or simply GNLσM. The most striking
difference from the standard nonlinear sigma model is that in the GNLσM the constraint is
nonholonomic. The relation of the GNLσM with the Rouse model [10, 11] has been discussed
in [8]. It has also been shown that it gives the correct equilibrium limit in agreement with
[1]. Applications of the GNLσM have been developed in [13, 14], computing for instance
the dynamic form factor of the chain in the semiclassical approximation and the probability
distribution Z(r12) which measures the probability that in a given interval of time the average
distance between two points of the chain is r12.

One point that still needs to be clarified is if the GNLσM can be related to some stochastic
process. In fact, the GNLσM has not been derived starting from a Langevin equation and
applying for instance the Martin–Siggia–Rose formalism [12] in order to pass to the path
integral formulation. The problem is that this approach becomes cumbersome if one has to
deal with constraints. For this reason, in [8] the constraints have been added to the path
integral describing the fluctuations of the beads with the help of an insertion of Dirac delta
functions. This is a widely exploited procedure in the statistical mechanics of polymers in
order to impose topological conditions [15–18].

To establish a relation between the GNLσM and a stochastic process is the main goal of
the present work. For this purpose, after a brief introduction to the GNLσM, we define in
section 3 a two-dimensional vector field ϕν which satisfies a free Langevin equation and
additional nonholonomic constraints. These are exactly the same constraints which appear
also in the GLNσM. Our treatment is limited to two dimensions for simplicity. The generating
functional �̃[J ] of the correlation functions of the fields ϕν can be constructed using the
prescription of [19]. The discretized version of �̃[J ] describes the Brownian motion of a
set of M-beads with diffusion constant D which are connected together by links of fixed
length. The difference between �̃[J ] and the generating functional �[J ] of the correlation
functions of the GNLσM consists in a functional determinant. We show that this determinant
is trivial by eliminating the constraints using a special set of variables, called here pseudo-polar
coordinates. As a result we prove the equivalence of �̃[J ] and �[J ] and thus the connection
of the GNLσM with a stochastic process of diffusing particles.

2. A path integral approach to the dynamics of a chain

Let us consider a single free particle in a d-dimensional space. At the time t = 0 the particle
finds itself at the initial point R0 and starts to perform a random walk. As is well known,
the probability ψ(tf ; Rf , R0) that, after the time tf , the particle arrives at a given point

Rf , satisfies the differential equation: ∂ψ

∂tf
= D

∂2ψ

∂R2 , where D is the diffusion constant. The
boundary condition at tf = 0 is chosen in such a way that ψ(0; Rf , R0) = δ(Rf − R0). The
probability function ψ can be expressed in the path integral form

ψ(tf ; Rf , R0) = A

∫ R(tf )=Rf

R(0)=R0

DR(t) exp

[
−

∫ tf

0

Ṙ2(t)

4D
dt

]
, (1)

with A being a normalization factor. We note that the diffusion constant D appearing in
equation (1) satisfies the relation D = kBT τ

m
, where kB is the Boltzmann constant and τ is the

relaxation time that characterizes the rate of decay of the drift velocity of the particle.

2



J. Phys. A: Math. Theor. 42 (2009) 145002 F Ferrari and J Paturej

For a system of M noninteracting particles, the probability that the mth particle starting
from the point R0,m arrives at the point Rf,m is given by the probability function

ψM =
M∏

m=1

[
A

∫ Rm(tf )=Rf,m

Rm(0)=R0,m

DRm(t)

]
exp

[
− 1

2kBT τ

m

2

M∑
m=1

∫ tf

0
Ṙ2

m(t) dt

]
. (2)

In this form, the connection of the above probability function with the partition function
of M free particles in quantum mechanics becomes evident. The quantity AM =
m
2

∑M
m=1

∫ tf
0 Ṙm(t) dt represents the action of the system, while

κ = 2kBT τ (3)

plays the role of the Planck’s constant. Indeed, one may show that the uncertainties in the
position and momentum of a Brownian particle in a solution due to the frequent collisions
with the surrounding molecules satisfy an analogue of the Heisenberg uncertainty relations:
	p	r ∼ κ [20].

In this work, we would like to consider a more sophisticated system than free particles,
namely a chain of length L composed of M beads of mass m joined together by segments of
fixed length a. In polymer literature a chain of this kind is also referred to as a freely jointed
chain (FJC). Clearly, the quantities L,M and a are related by the identity L = Ma. Thus, if
M̃ is the total mass of the chain, then the mass of a single bead is m = M̃

L
a. In the following,

we are going to construct the probability function �FJC which measures the probability that the
chain fluctuates in some solution from a given initial configuration R0,1, . . . , R0,M at t = 0 to
a final configuration Rf,1, . . . , Rf,M at t = tf . While the chain fluctuates, each bead performs
a Brownian motion. The only difference with respect to a free particle is that its radius vector
Rm(t) fulfils also the additional conditions

|Rm(t) − Rm−1(t)|2
a2

= 1 m = 2, . . . , M. (4)

These conditions are needed by the requirement that the length of the joining segments is
equal to a. It seems thus natural to express �FJC starting from the probability function ψM of
M free particles and implementing into it the constraints (4) with the help of a product of delta
functions:

�FJC =
M∏

m=1

[
A′

∫ Rm(tf )=Rf,m

Rm(0)=R0,m

DRm(t)

]
e−a

∑M
m=1

∫ tf

0 cṘ2
m(t) dt

M∏
m=2

δ

( |Rm(t) − Rm−1(t)|2
a2

− 1

)
.

(5)

The constant c appearing in equation (5) is given by

c = M̃

4kBT τL
. (6)

There is some arbitrariness in the discrete chain, in the sense that there is no reason for
which the massless segments of length a could not be replaced by small massive bars or by
small massive cylinders. This would need the introduction of their inertial moments. This
arbitrariness can be removed by considering the continuous limit for which a goes to zero,
while the number M of segments goes to infinity in such a way that the length L of the chain is
preserved. To perform the continuous limit, we define the discrete arc-length sm = am, with
m = 1, . . . ,M . Moreover, we introduce the new notation for the radius vectors of the beads:
R(t, sm) ≡ Rm(t). In a similar way, the final and initial configurations of the chain will be
denoted Rf (sm) and R0(sm), respectively. To obtain the continuous limit one has to replace
everywhere the discrete arc-length sm with the continuous variable s, i.e. sm → s. The other
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recipes for passing from equation (5) to the probability function of the continuous chain are
R(t,sm)−R(t,sm−1)

a
→ R′(t, s) with R′ = ∂R

∂s
and

∑M
m=1 a → ∫ L

0 ds. The result is

� =
∫ R(tf ,s)=Rf (s)

R(0,s)=R0(s)

DR(t, s) e−c
∫ tf

0 dt
∫ L

0 dsṘ2(t,s)δ(R′2(t, s) − 1). (7)

Let us note that the constraint

R′2 − 1 = 0 (8)

is automatically satisfied if R(t, s) is differentiable, because the trajectory of the chain at each
instant t has been parametrized with the help of the arc-length s. As a consequence, condition
(8) restricts the sum over all possible configurations R(t, s) in the path integral (7) to those
which are differentiable with respect to s. From the physical point of view, we have already
seen that the meaning of the constraint (8) is the inextensibility of the chain.

To complete the definition of the path integral in equation (7) we specify the boundary
conditions of the vector field R(t, s) with respect to the variable s. The physics of the problem
suggests for those boundary conditions the following two alternatives:

(a) Periodic boundary conditions R(t, s + L) = R(t, s).
(b) Fixed end conditions: R(t, 0) = r1 and R(t, L) = r2, where r1 and r2 are fixed points

satisfying the requirement |r2 − r1| � L.

Case (a) corresponds to a closed chain, while case (b) describes an open chain with the two
ends fixed at the points r1 and r2.

The connection of the path integral in equation (7) to field theory becomes evident after
passing to dimensionless coordinates σ1 = t

tf
and σ2 = s

L
. In these coordinates � is given by

� =
∫ R(tf ,σ2)=Rf (σ2)

R(0,σ2)=R0(σ2)

DR(σ1, σ2) e
− ∫ 1

0 dσ1dσ2
M̃

2κtf
[( ∂R

∂σ1
)2+( ∂R

∂σ2
)2]

δ

(
1

L2

∣∣∣∣∣
(

∂R

∂σ2

)2
∣∣∣∣∣ − 1

)
. (9)

Let us note that the constraint 1
L2

∣∣( ∂R
∂σ2

)2∣∣ − 1 = 0 fixes the second term in the
exponent appearing in the right-hand side of the above equation in such a way that∫ 1

0 dσ1 dσ2
M̃

2κtf

(
∂R
∂σ2

)2 = M̃L2

2κtf
, i.e. this term is an irrelevant constant. The right-hand side

of equation (9) closely resembles that of a nonlinear sigma model. For this reason, the field
theory described in equation (7) has been called the generalized nonlinear sigma model. The
most relevant difference of the GNLσM from the nonlinear sigma model lays in the fact the
in the latter the constraints are imposed on the modulus of the vector field R(t, s), while in
equation (7) what is constrained is the modulus of ∂R

∂σ2
.

3. The generalized nonlinear sigma model and its relation to the Langevin equation

The starting point of this section is the generating functional �[J ] associated with the
probability function (7):

�[J ] =
∫

DR(t, s) e−c
∫ tf

0 dt
∫ L

0 dsṘ2(t,s)δ(|R′(t, s)|2 − 1) e− ∫ tf

0 dt
∫ L

0 dsJ(t,s)·R(t,s). (10)

The boundary conditions of the field R(t, s) are here implicitly understood. The way in
which equation (10) has been obtained is different from the usual approach to the dynamics
of a chain, which is based on a Langevin equation. In this section we are going to show that
the GNLσM can be related to a Langevin equation too. For simplicity, we restrict ourselves
to the two-dimensional case.
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Since the GNLσM ignores all interactions, it is natural to suppose that it should be related
to a free Langevin equation

ϕ̇ν = ν, (11)

where ϕν is a two-dimensional vector field and ν is a white noise source, whose components
ν(i), i = 1, 2 satisfy the basic correlation functions

〈ν(i)(t, s)〉 = 0 (12)

〈ν(i)(t, s)ν(j)(t ′, s ′)〉 = δij

c
δ(t − t ′)δ(s − s ′) i, j = 1, 2. (13)

One may also expect that, together with equation (11), the field ϕν must also satisfy the
constraint

ϕ′2
ν = 1. (14)

The generating functional �̃[J ] of the correlation functions of the field ϕν is then given by
[19]:

�̃[J ] =
∫

ϕ′2
ν =1

Dν e−c
∫ tf

0 dt
∫ L

0 dsν2
e
∫ tf

0 dt
∫ L

0 dsJ·ϕν . (15)

The meaning of the statistical sum in the right-hand side of the above equation becomes clear
if we rewrite it as follows:

�̃[J ] =
∫

Dν

∫
R′2=1

DR e−c
∫ tf

0 dt
∫ L

0 dsν2
δ(R − ϕν) e

∫ tf

0 dt
∫ L

0 dsJ·R. (16)

The path integration over ν is now unconstrained, while that over the new field R is limited to
the configurations which, in the case of periodic boundary conditions, are of the form

R(t, s) =
∫ s

0
du(cos φ(t, u), sin φ(t, u)), (17)

where φ(t, u + L) = φ(t, u). If we have fixed end boundary conditions, then equation (17) is
replaced by

R(t, s) =
∫ s

0
du(cos φ(t, u), sin φ(t, u)) + r1 (18)

with the additional constraints r2 = ∫ L

0 du(cos φ(t, u), sin φ(t, u))+r1. In both cases the only
left degree of freedom is the angle φ(t, s). Let us note that the definition and computation of
path integrals in polar field coordinates have been discussed in [18, 21] and, more recently,
an interesting conjecture about the passage to polar field variables has been presented in [22].
These results cannot be applied however to the present case, in which the passage to polar
fields is also accompanied by an integration over the s variable.

The probability function �̃[J ] of equation (16) should be compared with the generating
functional �[J ] of equation (10). The latter may be written as follows:

�[J ] =
∫

Dν

∫
DR e−c

∫ tf

0 dt
∫ L

0 dsν2
δ(R′2 − 1)δ(Ṙ − ν) e− ∫ tf

0 dt
∫ L

0 dsJ·R. (19)

The connection with the Langevin equation (11) is made by noting that, for any solution ϕν

of that equation, it is possible to write the formula

δ(Ṙ − ν) = det−1∂t δ(R − ϕν). (20)

Applying equation (20) to equation (19) we obtain, up to an irrelevant constant

�[J ] =
∫

DRDν e−c
∫ tf

0 dt
∫ L

0 dsν2
δ(R − ϕν)δ(R′2 − 1) e− ∫ tf

0 dt
∫ L

0 dsJ·R. (21)

5
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As already announced, this expression of the generating functional �[J ] differs from �̃[J ]
only by the fact that the condition R′2 = 1 is imposed with the help of the delta function
δ(R′2 −1). In the following sections the degrees of freedom which are frozen by the condition
R′2 = 1 will be projected out from the path integral (21) and it will be shown that what
remains is exactly the generating functional �̃[J ] related to the constrained stochastic process
of equations (11) and (14).

4. The discrete generating functional in pseudo-polar coordinates

As a first step to show the equivalence of the generating functionals �[J ] and �̃[J ], we
replace the continuous variables s and t with discrete variables sm and tn, with 0 � m � M

and 0 � n � N . The spacings in the discrete s and t-lines are respectively given by

sm − sm−1 = a m = 2, . . . ,M (22)

tn − tn−1 = b n = 2, . . . , N, (23)

where a and b are supposed to be very small. The continuous limit is recovered in the limit
M,N −→ +∞, a, b −→ 0 and Ma = L,Nb = tf . To simplify formulae, it will be used in
the following the shorthand notation:

R(tn, sm) ≡ Rnm ν(tn, sm) ≡ νnm ϕν(tn, sm) ≡ ϕν,nm. (24)

In this way the discrete version of the constraint R′2(t, s) = 1 is replaced by the set of
conditions

(Rnm − Rn(m−1))

a2
= 1

n = 1, . . . , N

m = 2, . . . ,M.
(25)

With the above settings the generating functional �[J ] of equation (21) may be rewritten as
follows1:

�[J ] = lim
N→∞

lim
M→∞

∫ +∞

−∞

[∏
n,m

dνnm dRnm

]
exp

{
−abc

∑
n,m

ν2
nm

}

×
∏
n,m

δ(Rnm − ϕν,nm) exp

{
ab

∑
n,m

Jnm · Rnm

}

×
∏
n

M∏
m=2

2

a
δ

( |Rnm − Rn(m−1)|2
a2

− 1

)
. (26)

Let us also note in the last line of equation (26) the normalization factor
∏

n

∏M
m=2

2
a

in the
definition of the delta function imposing the constraints. The reason of this normalization will
be clear later.

To eliminate the constraints (25), we pass to a new set of coordinates, which in the
following will be called pseudo-polar:

Rnm =
m∑

m′=1

lnm′ (cos φnm′ , sin φnm′) . (27)

The ranges of variation of the variables lmn and φnm are respectively given by

0 � lmn < +∞ 0 � φnm � 2π. (28)

1 Unless otherwise specified, from now on it will be understood that the indices n and m in sums and products will
take all possible values in their respective ranges, i.e. 1 � n � N and 1 � m � M .
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The coordinate lnm for n = 1, . . . , N and m = 2, . . . , M , describes the length of the mth
segment at the instant tn. The coordinate ln1 is very special, because it gives the position
with respect to the origin of the reference system of the first bead in the chain at the time tn.
Finally, the angles φnm tell us how the M − 1 segments are reciprocally oriented. After the
transformation (27), the vector Rnm depends on the variables lnm and φnm, i.e.

Rnm = Rnm({lnm}, ln1; {φnm}), (29)

where {lnm} is the set of all lnm’s for which m 
= 2 and {φnm} is the set of all φnm’s. Analogously,
we denote with {Rnm} the set of all Rnm’s for m = 1, . . . ,M and n = 1, . . . , N . We are
now able to explain the reason of the normalization factor

∏
n

∏M
m=2

2
a

in equation (26). In

the pseudo-polar variables the constraints (25) become: l2
nm

a2 = 1. The factor 2
a

is necessary
in order to normalize the delta functions imposing these constraints. As a matter of fact, it is

possible to check that 2
a

∫ +∞
0 dlnmδ

( l2
nm

a2 − 1
) = 1.

In order to perform the transformations (27) in the expression of the generating functional
�[J ] of equation (26), we need to compute the associated Jacobian determinant. In the rest
of this section we will prove for a general functional f ({Rnm}) the following formula:∫ ∏

n,m

dRnmf ({Rnm}) =
∫ +∞

0

∏
n,m

dlnm

∫ 2π

0

∏
n,m

dφnmf ({Rnm({lnm}, ln1; {φnm})})JNM, (30)

where the Jacobian JNM of the transformation (27) is given by

JNM({lnm}, ln1; {φnm}) =
∏
n

lnMln(M−1) · · · ln1. (31)

Let us show that JNM is really that given in equation (31). In order to proceed, it is
convenient to introduce the components x(1)

nm and x(2)
nm of the vectors Rnm, i.e. Rnm = (

x(1)
nm, x(2)

nm

)
.

Thus, equation (27) becomes

x(1)
nm =

m∑
m′=1

lnm′ cos φnm′ x(2)
nm =

m∑
m′=1

lnm′ sin φnm′ (32)

and JNM may be written as follows:

JNM({lnm}, ln1; {φnm}) = det

∣∣∣∣∣∣∣∣
∂x(1)

nm

∂ln′m′

∂x(2)
nm

∂ln′m′

∂x(1)
nm

∂φn′m′

∂x(2)
nm

∂φn′m′

∣∣∣∣∣∣∣∣
. (33)

Strictly speaking, JNM is the determinant of a block matrix Anm;n′m′ with composite indices
nm and n′m′. Anm;n′m′ is composed by four NM × NM matrices, since n, n′ = 1, . . . , N and

m,m′ = 1, . . . ,M . Due to the fact that ∂x
(i)
nm

∂ln′m′ = ∂x
(i)
nm

∂φn′m′ = 0 for i = 1, 2 if n 
= n′, Anm;n′m′ is a
block diagonal matrix. As a consequence, it is possible to write its determinant as follows:

JNM =
∏
n

JnM, (34)

where

JnM = det

∣∣∣∣∣∣∣∣
∂x(1)

nm

∂lnm′

∂x(2)
nm

∂lnm′

∂x(1)
nm

∂φnm′

∂x(2)
nm

∂φnm′

∣∣∣∣∣∣∣∣
. (35)

7
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Using equations (32), it is found after a few calculations that JnM is the determinant of the
block matrix

JnM = det

∣∣∣∣A(n) B(n)

C(n) D(n)

∣∣∣∣ , (36)

where A(n), B(n), C(n),D(n) are lower triangular M × M matrices with elements

Amm′(n) = θmm′ cos φnm′ Bmm′(n) = θmm′ sin φnm′ (37)

Cmm′(n) = −lnm′θmm′ sin φnm′ Dmm′(n) = lnm′θmm′ cos φnm′ . (38)

Here the matrix θmm′ denotes the discrete equivalent of the Heaviside theta-function

θmm′ = 1 if m′ � m (39)

θmm′ = 0 if m′ > m. (40)

If the matrices A(n), B(n), C(n),D(n) would commute, one could use a known theorem of
linear algebra and write JnM = det(A(n)D(n) − B(n)C(n)). In our case these matrices do
not commute, but it is still possible to compute the determinant JnM by induction on M.

If M = 1, it is easy to show that

Jn1 = ln1. (41)

Next, we prove that

JnM = lnMJn(M−1). (42)

For this purpose, it will be convenient to introduce new indices α, β = 1, . . . ,M − 1. At this
point, we note that the Mth column of the 2M × 2M block matrix whose determinant we wish
to compute in equation (35) has only two elements which are not zero. Thus, we expand JnM

with respect to the Mth column. Taking into account the necessary permutations and the fact
that the two nonvanishing elements are AMM(n) = cos φnM and CMM(n) = −lnm sin φnM we
obtain

JnM = cos φnM det

∣∣∣∣∣∣
θαβ cos φnβ θαβ sin φnβ 0

−lnβθαβ sin φnβ lnβθαβ cos φnβ 0
−lnβθMβ sin φnβ lnβθMβ cos φnβ lnM cos φnM

∣∣∣∣∣∣
+ (−1)MlnM sin φnM det

∣∣∣∣∣∣
θαβ cos φnβ θαβ sin φnβ 0
θMβ cos φnβ θMβ sin φnβ sin φnM

−lnβθαβ sin φnβ lnβθαβ cos φnβ 0

∣∣∣∣∣∣ . (43)

The determinants of the remaining two (2M − 1) × (2M − 1) matrices may be expanded
according to the (2M − 1) th column, because these columns contain only one nonvanishing
element. After simple calculations one finds

JnM = lnM det

∣∣∣∣∣ θαβ cos φnβ θαβ sin φnβ

−lnβθαβ sin φnβ lnβθαβ cos φnβ

∣∣∣∣∣ , (44)

which is exactly equation (42) because

Jn(M−1) = det

∣∣∣∣∣ θαβ cos φnβ θαβ sin φnβ

−lnβθαβ sin φnβ lnβθαβ cos φnβ

∣∣∣∣∣ . (45)

Using equations (41) and (42) it is easy to show by induction that JnM = lnMln(M−1) · · · ln1.
With a straightforward application of equation (34) it is now possible to prove equation (31).
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5. Recovering the generating functional Ψ̃[J ] of the constrained stochastic process of

equations (11)–(14)

Let us now go back to the generating functional �[J ] of equation (26). After the
change of variables (27), the delta functions imposing the constraints simplify as follows:

δ
( |Rnm−Rn(m−1)|2

a2 − 1
) = δ

( l2
nm

a2 − 1
)
. Further simplifications are obtained after applying

the two delta function identities δ
( l2

nm

a2 − 1
) = a2δ

(
l2
nm − a2

)
and δ

(
l2
nm − a2

) =
1

2a
[δ(lnm − a) + δ(lnm + a)]. Remembering that in our case lnm � 0, it is possible to put:

δ
(
l2
nm − a2

) = 1
2a

δ(lnm − a). As a consequence, the expression of the generating functional
�[J ] in pseudo-polar coordinates becomes

�[J ] = lim
N→∞

lim
M→∞

∫ +∞

−∞

∏
n,m

dνnm

∫ +∞

0

∏
n,m

dlnm

∫ 2π

0

∏
n,m

dφnm exp

{
−abc

∑
n,m

ν2
nm

}

×
∏
n,m

δ(Rnm({lnm}, ln1; {φnm}) − ϕν,nm) exp

{
ab

∑
n,m

Jnm · Rnm({lnm}, ln1; {φnm})
}

×
∏
n

ln1

[∏
n

M∏
m=2

δ (lnm − a)

]
M∏

m=2

lnM · · · ln2. (46)

In writing the above equation we have separated from the Jacobian determinant JNM the
contribution coming from the l′n1s, because these quantities denote the distance with respect to
the origin of the first bead at different times tn’s and are thus not fixed by the constraints. The
integration in equation (46) over the lnm’s, for n = 1, . . . , N and m = 2, . . . , M , produces as
a result

�[J ] = lim
N→∞

lim
M→∞

aN(M−1)

∫ +∞

−∞

∏
n,m

dνnm

∫ +∞

0

∏
n

dln1ln1

∫ 2π

0

∏
n,m

dφnm exp

{
−abc

∑
n,m

ν2
nm

}

×
∏
n,m

δ(Rnm({a}, ln1; {φnm}) − ϕν,nm) exp

{
ab

∑
n,m

Jnm · Rnm({a}, ln1; {φnm})
}

. (47)

Here the symbol {a} denotes the set of all lnm’s for m 
= 2 after the imposition of the constraints
lnm = a. We can now rewrite equation (47) as an integral over a restricted domain D:

�[J ] = lim
N→∞

lim
M→∞

∫
D

∏
n,m

dlnmdφnm

∫ +∞

−∞

∏
n,m

dνnm exp

{
−abc

∑
n,m

ν2
nm

} ∏
n

lnM · · · ln1

×
∏
n,m

δ(Rnm({lnm}, ln1; {φnm}) − ϕν,nm) exp

{
ab

∑
n,m

Jnm · Rnm({lnm}, ln1; {φnm})
}

,

(48)

where D is the domain of all lnm’s and φnm’s with the constraints lnm = a for m = 2, . . . ,M

and n = 1, . . . , N :

D =

⎧⎪⎨
⎪⎩{lnm}, {φnm}

∣∣∣∣∣∣∣
lnm = a m = 2, . . . , M and n = 1, . . . , N

0 � ln1 � +∞ n = 1, . . . , N

0 � φnm � 2π m = 1, . . . ,M and n = 1, . . . , N

⎫⎪⎬
⎪⎭ . (49)
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At this point, using equations (30) and (31) we go back to Cartesian coordinates

�[J ] = lim
N→∞

lim
M→∞

∫
D

∏
n,m

dRnm

∫ +∞

−∞

∏
n,m

dνnm exp

{
−abc

∑
n,m

ν2
nm

}

×
∏
n,m

δ(Rnm − ϕν,nm) exp

{
ab

∑
n,m

Jnm · Rnm

}
. (50)

The domain D in Cartesian coordinates is given by all Rnm’s in the two-dimensional plane
subjected to the constraints (25):

D =
{

{Rnm}
∣∣∣∣∣

Rnm ∈ R
2 m = 1, . . . ,M n = 1, . . . , N

|Rnm−Rn(m−1)|2
a2 = 1 m = 2, . . . ,M n = 1, . . . , N

}
. (51)

Finally, we rewrite the path integral in equation (50) in its continuous form. The result is

�[J ] =
∫

R′2=1
DR

∫
Dν e−c

∫ tf

0 dt
∫ L

0 dsν2
δ(R − ϕν) e

∫ tf

0 dt
∫ L

0 dsJ·R. (52)

The right-hand side of the above equation coincides exactly with the right-hand side of
equation (16). This proves the equivalence between the generating functional �[J ] of the
GNLσM and the generating functional �̃[J ] of the stochastic process of equations (11)–(14).

6. Conclusions

In this work it has been shown that the GNLσM is related to a stochastic process which, after
discretization of the arc-length variable s, describes the Brownian motion of M beads subjected
to the constraints (25). These constraints enforce the conditions that the links connecting the
beads are of fixed length. More in details, it has been proved that the generating functional
�[J ] of the GNLσM coincides with the generating functional �̃[J ] of the solutions of the
Langevin equation (11) and of the constraint (14). The fact that the two functionals are equal
was not a priori obvious, because they differ by the delta function δ(R′2 − 1) which contains
quadratic powers of the fields. If δ(g(R)) is a delta function imposing the condition g(R) = 0,
then in general the following identity is valid:∫

DRf (R)δ(g(R)) =
∫

g(R)=0
DRf (R)det−1

∣∣∣∣δg(R)

δR

∣∣∣∣ . (53)

If in our case the functional determinant appearing in the right-hand side of equation (53)
would be not trivial, then there would be no chance that (16) and (21) coincide. Luckily, it
turns out that, after passing to the pseudo-polar coordinates (27), the delta function δ(R′2 − 1)

produces just a functional determinant which is a trivial constant.
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